Sum/Difference, Double Angle Trigonometric Formulae

Using the diagram below, prove the identity: $\cos(A - B) = \cos A \cos B + \sin A \sin B$

Proof: $PQ^2 = 1^2 + 1^2 - 2(1)(1)\cos(A - B)$ from the cosine rule

Also, $PQ^2 = (\cos A - \cos B)^2 + (\sin A - \sin B)^2$ distance between P,Q.

 $\therefore 2 - 2\cos(A - B) = \cos^2 A + \cos^2 B - 2\cos A\cos B + \sin^2 A + \sin^2 B - 2\sin A\sin B$ using the fact that $\cos^2 A + \sin^2 A = 1$ (for B also) and then dividing by -2, we get $\cos(A - B) = \cos A\cos B + \sin A\sin B$

Proofs for related sum/difference, double angle formulae:

Listed below are the other related identities. Selected proofs are on next page.

 $1.\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$

$$1.*\cos(2A) = \cos^2 A - \sin^2 A = 2\cos^2 A - 1 = 1 - 2\sin^2 A$$

$$2.\sin(A \pm B) = \sin A \cos B \pm \sin B \cos A$$

$$2 * \sin(2A) = 2 \sin A \cos A$$

$$3.\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$

$$3 * \tan(2A) = \frac{2 \tan A}{1 - \tan^2 A}$$

Selected Proofs:

To find cos(A+B): This is also used for sin and tan and is not shown for them.

Think of cos(A + B) as cos(A - (-B)) so replace B with -B in the original identity.

$$\therefore \cos(A+B) = \cos A \cos(-B) - \sin A \sin(-B)$$

But,
$$\cos(-B) = \cos B$$
 and $\sin(-B) = -\sin(B)$

(Think of the graphs of cos, sin for this)

$$\therefore \cos(A+B) = \cos A \cos B + \sin A \sin B$$

To find sin(A - B), use the cofunction identity.

$$\sin(A - B) = \cos[90 - (A - B)] = \cos[(90 - A) + B]$$

Sub 90 - A and B into the cosine identity,

$$=\cos(90-A)\cos B - \sin(90-A)\sin B$$

$$= \sin A \cos B - \cos A \sin B$$
 as required

$$\therefore \sin(A - B) = \sin A \cos B - \cos A \sin B$$

To find $\sin 2A$, just let B = A

To find
$$tan(A+B)$$
 use $\frac{sin(A+B)}{cos(A+B)}$

$$\frac{\sin(A+B)}{\cos(A+B)} = \frac{\cos B \sin A + \sin B \cos A}{\cos A \cos B - \sin A \sin B}$$

divide each term in the numerator and denominator by cosAcosB

$$= \frac{\tan A + \tan B}{1 - \tan A \tan B}$$
 as required. To find tan2A, replace B with A.

Section B: Long Answer-Full Solutions Required

1. Prove the identity:
$$\frac{\tan^2 \theta - 1}{\tan^2 \theta + 1} = \cos 2\theta$$

2.
$$\frac{\csc A}{\cot A + \tan A} = \cos A$$

3. Solve for θ in the interval $0 \le \theta \le 2\pi$:

a)
$$2\cos^2\theta + \cos\theta = 1$$

b)
$$\sin 2\theta = 3\cos^2\theta$$

c)
$$2\tan^2\theta + \frac{3}{\cos^2\theta} = 8$$

- 4. a) On the same set of axes graph $y = \tan x$ and $y = \sin 2x$ over the interval $0 \le x \le 2\pi$. Circle the points of intersection.
 - b) Find the points of intersections you circled algebraically.

5. Given that
$$\frac{\pi}{2} \le A \le \pi$$
 and $\pi \le B \le \frac{3\pi}{2}$ and that $\sin 2A = -\frac{3}{5}$ and $\cot B = \frac{5}{12}$, find:

- a) $\sin A$
- b) $\cos 2B$

c)
$$\tan\left(B + \frac{\pi}{4}\right)$$
. Use your answer to determine whether B is greater than $\frac{5\pi}{4}$

Answers to Section B: Long Answer

1. 2. are identities 3a)
$$\frac{\pi}{3}, \frac{5\pi}{3}, \pi$$
 b) $\frac{\pi}{2}, \frac{3\pi}{2}, \tan^{-1}\left(\frac{3}{2}\right), \tan^{-1}\left(\frac{3}{2}\right) + \pi$ c) $\frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4}$

4b)
$$x = 0, \pi, 2\pi, \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4}$$

5.a)
$$\frac{1}{\sqrt{10}}$$
 or $\frac{3}{\sqrt{10}}$ b) $-\frac{119}{169}$ c) $-\frac{17}{7}$: negative \Rightarrow B> $\frac{5\pi}{4}$

10. Find $\lim_{\theta \to 0} \frac{\sin \theta}{\theta}$ using a geometric proof

The proof is a "sandwich" proof. We will show that the middle part must be between the upper and the lower part, yet at the limiting value will be equal to each of the two.

Consider area $\triangle OPC \le \triangle OPB \le sector OPQ$ (where Q is the xintercept of the circle)

$$\therefore$$
 in terms of θ : $\frac{\sin\theta\cos\theta}{2} \le \frac{1}{2}(1)^2 \theta \le \frac{\tan\theta}{2}$

$$\sin\theta\cos\theta \le \theta \le \frac{\sin\theta}{\cos\theta}$$

assuming θ is acute (so everything is positive)

divide each by $\sin \theta$

$$\cos\theta \le \frac{\theta}{\sin\theta} \le \frac{1}{\cos\theta}$$

In the limiting case when $\theta \to 0$, both $\cos \theta$ and $\frac{1}{\cos \theta}$ approach 1.

$$\therefore \lim_{\theta \to 0} \frac{\theta}{\sin \theta} = 1 \text{ since we have "sandwiched" it between 1 and 1}$$

it follows that $\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1$ also, as the reciprocal of 1 equals 1 also.

Problems- Identities, Equations- No calculators! (except for 3c)

1. If $\sin \theta = \frac{2}{3}$ and θ is acute, find the value of a) $\sin 2\theta$ and b) $\sin 4\theta$.

2. Find
$$\tan x$$
 given that the value of $\tan \left(x - \frac{3\pi}{4}\right) = 2$

3. Solve each of the following in the interval $[0,2\pi]$.

a)
$$\sin^2 x + \cos^2 x = \cos x$$

b)
$$\sin^2 x \cos^2 x = \frac{3}{16}$$

c)
$$\cos x + \tan x = 0$$

d)
$$\cos 2x = \sin(x + \frac{3\pi}{2})$$

e)
$$tan(2x) = \frac{1}{1 + tan x}$$
 (you may use your calculator for this near the end)

4. Prove each of the following identities:

a)
$$\frac{\sin 2x}{1 + \cos 2x} = \tan x$$

5 Predict an equation for the following graph:

Note: the first **minimum** value of x>0 is at the point (6,-1)

Answers#1-#5:la)
$$\frac{4\sqrt{5}}{9}$$
 b) $\frac{8\sqrt{5}}{81}$ 2. $\frac{1}{2}$ 3. a) 0, 2π b) $\frac{\pi}{6}$, $\frac{7\pi}{6}$, $\frac{\pi}{3}$, $\frac{4\pi}{3}$ c) 5.617,3.808

d)
$$\frac{\pi}{3}, \frac{5\pi}{3}, \pi$$
 e) $.322, \pi + .322$ 5. $y = 3\cos\left(\frac{\pi x}{6}\right) + 2$

- 6. At the ocean, it is known that the tide follows a trigonometric path. At high tide, the water comes in to a point 1 metre from where I placed a flag. At low tide, the water comes in to a point 11 metres from the same flag. The time it takes from to get from high tide to low tide is 5 hours. It is now midnight and it is high tide. (Note: low tide=max and high tide=min in this case)
 - a) Plot the motion for two complete cycles below:

b) State a possible equation for this motion.

See graph above.

c) We want to wake up and go to the beach when we can set up our towels at a time between 10 am and 2 pm the next day when the water will be 4 metres from our flag. At what time will this be? Explain what you did, even if you used your graphing calculator to find the answer.

let
$$4 = -5\cos\left(\frac{\pi x}{5}\right) + 6$$

$$\frac{2}{5} = \cos\left(\frac{\pi x}{5}\right)$$

$$\Rightarrow \frac{\pi x}{5} = \cos^{-1}\left(\frac{2}{5}\right) + 2k\pi \text{ (we don't need the second case-given t=10to t=14)}$$

at 11:50:42 am the next day the flag will be 4 m away.

 $\therefore x = 11.845 \text{ or } 11:50:42$